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1. The determination of the standing gravitational waves on the surface 
of a rotational fluid reduces to the following boundary value problem: 

A$ = P ($) in the region T 

$ (r, 0) = 0, 11) (2, f) = 1 

ljl x 2 + $,2 + 2vf = 0 for y=j 
i 
v=ghs &Al 

Q2' c (1) 

where y = f(x) is the equation of the unknown free surface (figure), $ 
is the stream function, h is the “depth” of the fluid, Q is the flow 
rate and c is the velocity. 

In the relationships (1) all the unknowns are assumed to be dimension- 
less, Q and h are taken to be the characteristic dimensions. 

The formulation and the first results of the problem (1) are due to 
Dubreil-Jacotoin [ 1 I. The most general results published up to the pre- 
sent time are due to Gouyon [ 2.2 1. His basic assumptions are the follow- 
ing: F&b) is a continuous function and the flow is near the uniform flow 

2. If we select x 
variables are u = $y 
following [ 2 I: 

uJ-J+ - 

and $ as independent variables, while the dependent 

and v = - $z, then the problem reduces to the 

vu+ + Ux = 0, UU,b + vu,!+ - ax= F ($) 
v=o for + = 0, 

uux + vvx + vu/ LL = 0 for +=l 

Problem (2) always admits the solution 

(3 
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v = 0, u EE 2 (I#) = 

of the periodic type 

(2T F (E) dk + I)“’ 
0 
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Let us assume that the function F($) is such that ~($1 > d > 0, where 
d is a positive constant. 

We shall introduce new variables 

U = ze’cose, v = ze' sin 0 

where 8 is the angle of inclination of the velocity vector. In terms of 
these variables, problem (2) is equivalent to the following problem: 

2Q,, + r6,= Ql(O, T), zzg -0x = 02 (e, 2) (3) 

e=o for 11) =0 (4) 

5X 
_-2s*tmQ *z_ve A- 

‘9 (I) 
(5) 

where the star denotes that the values of r and 8 are finite. @I and @g 
are the nonlinear operators 

c1,1 (4, 7) = - z0, (e’- 1) - 2, (cos 0 - 1) + Bx sin 9 

- e5) - zZ+ (eS - 1) + Ox (cos 8 - 1) + Z, sin 0 

The problem (3)-(5) has a trivial solution r E 8 P 0. We shall state 
the problem of finding the periodic solutions in x of the period x 
(dimensional wavelength) of problem (3)-(5) adding to the enumerated con- 
ditions the condition of symmetry 

e (- l/z h) = 8 (l//zh) = 0 

3. We shall investigate an auxiliary problem, 

place condition (5) by the following condition: 

(6) 

in which we shall re- 

(7) 
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Assume that 8 = 8, t 8,. r = r1 + r2, where rl and 8, is the solution 
of the boundary-value problem (4). (6) and (7) for the system (Problem A) 

where 6, and r2 solve 
which the exprtssions 
ing expressions (problem B): 

ze, + ,c$ = 0, z=+ -f&=0 (3) 

a homogeneous boundary problem for system (3). in 
of the right-hand terms are replaced by the follow- 

q (el + 82, 21 + 08) 

Lerro I. The solution of problem A has the form 

91 = Al (E), <I = Bl (f) + 20 (s=Z) 

where the operators A1 and B1 are linear integral operators with weak 
singularity and r,., = r*(O). 

(9) 

Lemma 2. Problem B is equivalent to the following system of equations: 

(10) 

where 

Kll = x Pm 
2cz sin nax sin nax’ X771 (9)X, (W’) 

n m t&l2 + (an)” n 2 W’) 

Klz = 2 un 
2a sin nczx cos ILCLX’ XVI (0) x, (4’) 

Pm2 + (anJ2 n 2 w 
n. m 

Kzl = 2 pLmz y crnJz 
2cr cos nux sin mm kh (9) g, (*‘) 

3t z W’) 
n, m 

Kzz = 2 
h 2u cos ?lUX cos nux’ g, (9) X, (W 

urna + (an)% Jc z (II’) 
n. m 

where a = Zn/h, g, and p,, are the eigenfunctions and eigenvalues of the 
operator 

d 

dg 
Z 

,+. = 01 
dq,, 

X”==~~ 

The functions g, and X, are normalized with the weighting function 

l/z. 
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Lemra 3. For any differentiable f1 and @I, which satisfy the cundi- 
tions IrI 1 < f, \r Ix/ < cl . . . . 1 f3,+/ < E where 6 is some sufficiently 
small positive number, system (10) has the unique solution 

B* = A2 (81, $11, T.2 = B2 (th, 21) (11) 

where A2 and B, are integer-power series of their variables; they con- 
verge uniformly in the rectangle T 

The validity of this lemma follows from the theory of integral- 
differential equations developed in (5). a particular case of which is 
the system (lot. In addition, the proof is based on the fact that the 
homogeneous boundary-value problem (4). (6) and (7) for the system (3) 
has only a trivial solution. 

We shall denote by Ai* the operators Ai under the condition that 
$r = 1. Then 

On the basis of the above statements DC is an integral-power series, 
which converges uniformly on - l/2 h, l/2 A, if the magnitude of 4 is 
sufficiently small. Substituting the expressions obtained in Equation 

(5). we obtain 

E=- >exp (-- 2zo) exp (-2 55dx’) 
0 

The function exp (- 2 t e) is analytic. We shall denote 

kc_ v exp f- 220) 

Then the problem will reduce to an equation of the form 

E = kRg 

In accordance with the foregoing, the operator A is the LiapUnOV 
operator, and, consequently, the general theory shows that Equation (14) 
has nontrivial solutions with a small norm in the region of Single- 
valued eigenvalnes of the corresponding linear problem. Hence, taking 
into consideration the structure of the function k, we arrive at the 
following basic theorem: 

Theorem. If the function FOjr) is such that the integral 
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1 

s F (Q) W (2 > d > 0) 
0 

exists, then for sufficiently small E > 0 the problem (3)-(5) for a fixed 
value of the period h has a one-parametrical family of solutions. if only 

where v,, are the eigen numbers of the linearized problem. 

Notes. 1. To compute the wave parameters it is not necessary actually 
to construct the operator R. It may be shown that the solution of the 
problem (3)-(5) is an analytic function of the parameter 4 v, - v. There- 
fore, it is simpler to look directly for the solution of the resulting 
boundary-value problem in the form of a power series in this parameter. 

2. The obtained solution will approximate not the uniform flow, as 
was the case in the prvious investigations, but some rotational flow. 
For FE 0 the obtained results lead to the classical results of Nekresov- 

Levi-Civita. 

3. For the determination of the function r,, the following equation may 

be used: 

1 

1 = \ (u),=,dg = \ z NJ) exp % (0, 9) d$ 
0 0 

where 

z = zo + Bl (E) + Bz (‘41 (EL TO + 6'1 (E)) 

4. The operators A, and B1 have the following form: 

01 = Al (E) = \ E (42 

21x sin nux’ sin nax z (I) 6!: (‘1 
nnu nu dx’ 

0 

‘19 

ZI’ = T,, + BI (E) = 20 + E (4 
, 2a cos nzx sin nax’ 

\ 2J ma g; (1) dx’ 

where g, are functions which satisfy the equation 

d 
z -& (zgi, - n”a”g,: = O 

and the condition g,’ (0) = 0. The functions g,* have the form 

5. The functions g, introduced in Lemma 2 have the form 
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where 6 is a normalizing multiplier. 

Consequently, all computations may actually be carried out for any 
given function F(Tfif . 

In conclusion I consider it to be my pleasant duty to express my 
gratitude to 1u.A. Kravchenko (France, Grenoble), who directed my atten- 
tion to these problems and whose discussions motivated this investiga- 
tion. 
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